elemental structures from which standard CN 12 diameters are derived!
(2) It shows that an invariant parameter in a uniaxial crystal structure may couple the variable parameters of the structure, so as to produce apparent dependences of the cell edges on the diameter of a component atom, which could not possibly arise intrinsically through the direct contacts of the atom with its neighbours.
(3) The observed variations of the cell dimensions of phases with the $\mathrm{AlCr}_{2} \mathrm{C}$ structure lead to some interesting observations on the nature of the electronic interactions in true interstitial phases. Hopefully, these may stimulate band-structure calculations to confirm or reject the reliability of such analyses.

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

References

HäGg, G. (1929). Z. Phys. Chem. Abt. B, 6, 221.
HägG, G. (1931). Z. Phys. Chem. Abt. B, 12, 413.
Jeitschko, W. \& Nowotny, H. (1967). Monatsh. Chem. 98, 329-337.
Jeitschio, W., Nowotny, H. \& Benesovsky, F. (1963). Monatsh. Chem. 94, 672-676.
neckel, A., Rastl, P., Eibler, R., Weinberger, P. \& Schwarz, K. (1976). J. Phys. C, 9, 579-592.
Pauling, L. (1947). J. Am. Chem. Soc. 69, 542-553.
Pearson, W. B. (1967). A Handbook of Lattice Spacings and Structures of Metals and Alloys. Oxford: Pergamon Press.
Pearson, W. B. (1979a). Acta Cryst. B35, 1329-1333.
Pearson, W. B. (1979b). Proceedings of TMS Symposium on Theory of Alloy Phase Formation, New Orleans, USA, February 1979. In the press.
Pearson, W. B. (1980). J. Less-Common Met. In the press.
Teatum, E., Gschneidner, K. \& Waber, J. (1960). LA-2345, US Department of Commerce, Washington.

SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1980). A36, 732-734
Weissenberg photographs: triclinic-cell parameters from one crystal setting. By Patrice de Meester, Chemical Crystallography Laboratory, Imperial College, London SW 7 2AY, England
(Received 23 January 1980; accepted 18 February 1980)

Abstract

A simple method is given for deriving the triclinic-cell parameters from three general reflections by vertical or horizontal measurements on upper-level films.

Introduction

The problem of obtaining, with a Weissenberg camera, all unit-cell parameters from one crystal setting has been studied by different authors. In most methods, measurements on an upper-level photograph serve to determine the origin shift of this level relative to the true origin. Then, two direct angles can be calculated and the cell is completely defined, the four other cell parameters being provided by the oscillation and the zero-level photographs. Buerger (1942, pp. 377 ff .) proposed a method of angular lag which requires the recording of both the zero and an upper level on the same film, and involves measurements of low-angle axial reflections. Hulme's (1966) method, easier and more accurate, enables
one to determine the unknown angles from measurements of the angular distance between general reflections, either graphically or by iteration. More recently, Hebert (1978) has described a procedure for deriving these angles from measurements of distances between festoons representing either axes or r.l. lines parallel to the axes. A method, quite different from these, has also been reported by Alcock \& Sheldrick (1967) where all reciprocal-cell parameters are calculated from the separations of the $\alpha_{1}-\alpha_{2}$ doublets and refined by least squares. In the following method, vertical or horizontal measurements involving three general reflections lead to an easy determination of the remaining reciprocal-cell parameters. These are accurate enough for preliminary work and may be refined later with a diffractometer.

Vertical measurements

Let us consider (Fig. 1) a crystal rotated about c. The r.l. point P has two components, ζ parallel to the rotation axis © 1980 International Union of Crystallography
and ξ in the $a^{*} b^{*}$ plane. Then,

$$
\begin{equation*}
d_{h k l}^{* 2}=\xi^{2}+\zeta^{2} \tag{1}
\end{equation*}
$$

ζ is measured on the oscillation photograph and is related to c by

$$
\begin{equation*}
\zeta=l c^{-1} \tag{2}
\end{equation*}
$$

ξ is obtained from the n th-level film by measuring, in mm, x, the perpendicular distance from a reflection to the central line. One way of indicating the central line is to let the direct beam fall for a few seconds on both extremities of the film and join the centers of the spots with a fine pen. Alternatively, one can record the direct beam by manually moving the cassette throughout its range, but this tends to give a thicker trace. A relation between ξ and x can be derived from two expressions given by Buerger (1942, pp. 223, 254ff.) for the reflection angle Ψ,

$$
2 \sin ^{-1}(\xi / 2 \cos \mu)=\Psi=C_{1} x
$$

where C_{1} is an instrumental constant equal to $2 \% / \mathrm{mm}$ for a camera diameter of 57.3 mm and μ is the equi-inclination angle. For such a camera, ξ, expressed in \AA^{-1}, is given by

$$
\begin{equation*}
\xi=2 \lambda^{-1} \sin x \cos \mu \tag{3}
\end{equation*}
$$

The general expression for $d_{h k l}^{*}$ can be written in the form

$$
\begin{equation*}
l^{2} c^{* 2}+2 h l a^{*} c^{*} \cos \beta^{*}+2 k l b^{*} c^{*} \cos \alpha^{*}=d_{h k l}^{* 2}-d_{h k 0}^{* 2} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{h k 0}^{* 2}=h^{2} a^{* 2}+k^{2} b^{* 2}+2 h k a^{*} b^{*} \cos \gamma^{*} . \tag{5}
\end{equation*}
$$

Equation (4) can be rewritten in terms of the observable quantities $\xi_{h k 0}^{2}\left(=d_{h k 0}^{* 2}\right)$ and $\xi_{h k l}^{2}\left(=d_{h k l}^{* 2}-l^{2} / c^{2}\right)$:

$$
\begin{equation*}
l^{2}\left(c^{* 2}-c^{-2}\right)+2 h l a^{*} c^{*} \cos \beta^{*}+2 k l b^{*} c^{*} \cos \alpha^{*}=\xi_{h k l}^{2}-\xi_{h k 0}^{2} . \tag{6}
\end{equation*}
$$

Three reflections give rise to three equations of type (6) which may be solved by inverting the matrix of the indices

$$
\left(\begin{array}{c}
c^{* 2}-c^{-2} \tag{7}\\
2 a^{*} c^{*} \cos \beta^{*} \\
2 b^{*} c^{*} \cos \alpha^{*}
\end{array}\right)=\left(\begin{array}{lll}
l_{1}^{2} & h_{1} l_{1} & k_{1} l_{1} \\
l_{2}^{2} & h_{2} l_{2} & k_{2} l_{2} \\
l_{3}^{2} & h_{3} l_{3} & k_{3} l_{3}
\end{array}\right)^{-1}\left(\begin{array}{l}
\xi_{h_{1} k_{1} l_{1}}^{2}-\xi_{h_{1} k_{1} 0}^{2} \\
\xi_{h_{2} k_{2} l_{2}}^{2}-\xi_{h_{2} k_{2} 0}^{2} \\
\xi_{h_{3} k_{3} l_{3}}^{2}-\xi_{h_{3} k_{3} 0}^{2}
\end{array}\right)
$$

Fig. 1. The components ζ and ξ of $d_{h k l}^{*}$.

Frequently, the first level $(l=1)$ will be the only upper level recorded in which case the inverse matrix simplifies to

$$
\frac{1}{D}\left(\begin{array}{ccc}
h_{2} k_{3}-h_{3} k_{2} & h_{3} k_{1}-h_{1} k_{3} & h_{1} k_{2}-h_{2} k_{1} \\
k_{2}-k_{3} & k_{3}-k_{1} & k_{1}-k_{2} \\
h_{3}-h_{2} & h_{1}-h_{3} & h_{2}-h_{1}
\end{array}\right)
$$

where the determinant $D=h_{1}\left(k_{2}-k_{3}\right)+h_{2}\left(k_{3}-k_{1}\right)+h_{3}\left(k_{1}\right.$ $-k_{2}$). Since a^{*} and b^{*} are known from the zero level, and c^{-1} from the oscillation photograph, (7) yields the remaining r.l. parameters.

Horizontal measurements

When vertical measurements cannot be made because the central line cannot be marked on the film, the ξ 's can be calculated from horizontal measurements as shown below.

In Fig. 2, P_{1} and P_{2} are r.l. points in the nth layer and O is the point of intersection of the oscillation axis with this layer. The angle, φ_{12}, subtended by P_{1} and P_{2} at O is measured on the film by the horizontal distance in $\mathrm{mm}\left(1 \mathrm{~mm}=2^{\circ}\right.$ in φ) between lines of slope 2 passing through the corresponding reflections. Hulme (1966) has described two methods of using these measurements to determine the shift of the n th-level origin relative to O and, thence, two angles of the direct cell: one method is a least-squares iteration necessitating the availability of a computer, and the other is graphical and, therefore, not very accurate. The following method is simple enough for hand calculation.

In Fig. 2 , as the points P_{1}, P_{2} and P_{3} are r.l. points in the nth layer, the distances marked d_{12}^{*}, d_{13}^{*} and d_{23}^{*} are deducible from the corresponding distances between r.l. points in the zero layer. Thus, $d_{12}^{*}=d_{\left(h_{2} k_{2} l-h_{1} k_{1} n\right.}^{*}=d_{\left.h_{2}-h_{1}, k_{2}-k_{1} .0\right)}^{*}$ etc. These three distances define a triangle $P_{1} P_{2} P_{3}$ and the angle ψ. The values of ξ_{1}, ξ_{2} and ξ_{3} can be obtained via the angles σ and τ as follows

$$
\begin{gather*}
\sigma+\tau=360-\left(\psi+\varphi_{12}+\varphi_{23}\right) \tag{8}\\
\frac{d_{12}^{*} \sin \sigma}{\sin \varphi_{12}}=O P_{2}=\frac{d_{23}^{*} \sin \tau}{\sin \varphi_{23}}
\end{gather*}
$$

whence,

$$
\frac{\sin \sigma-\sin \tau}{\sin \sigma+\sin \tau}=\frac{d_{23}^{*} \sin \varphi_{12}-d_{12}^{*} \sin \varphi_{23}}{d_{23}^{*} \sin \varphi_{12}+d_{12}^{*} \sin \varphi_{23}}
$$

Fig. 2. Quadrilateral used for the determination of the ξ 's.

Table 1. Data for copper(II) sulphate pentahydrate
Cell parameters determined by Brooker \& Nuffield (1966)

$$
\begin{aligned}
& a=6.122, b=10.695, c=5.962 \AA, \quad \alpha=97.58, \beta=107.17, \gamma=77.55^{\circ} \\
& a^{*}=0.1740, b^{*}=0.0960, c^{*}=0.1760 \AA^{-1}, \alpha^{*}=85.80, \beta^{*}=74.00, \gamma^{*}=100.75^{\circ}
\end{aligned}
$$

(a) Cell parameters obtained from φ measurements using three reflections

Data from Hulme's (1966) Table 2					Results		
hkl	φ_{m}	hkl	φ_{m}	hkl	c^{*}	α^{*}	β^{*}
101	81.0	021	83.8	í 01	0.1760	$86 \cdot 1$	73.9
101	85.5	031	79.5	101	0.1760	$86 \cdot 2$	73.9
211	103.0	031	108.0	111	$0 \cdot 1756$	85.7	74.5
111	71.0	$2 \overline{2} 1$	84.2	121	0.1758	84.7	74.7
111	103.0	021	83.8	101	0.1762	86.0	73.7
031	79.5	101	85.0	i 31	0.1765	$86 \cdot 2$	73.3

(b) Cell parameters calculated from ξ derived from Brooker \& Nuffield's data

$h k l$	ξ^{2}	$\xi_{h k l}^{2}-\xi_{h k 0}^{2}$	c^{*}	α^{*}	β^{*}
380	0.7128	0.0732			
381	0.7860	(0.073)		0.1759	85.81
270	0.6599	0.0193		(0.1758)	(85.79)
$2 \overline{7} 1$	0.6792	(0.019)			(74.09)
$\overline{6} 20$	1.0520	-0.1034			
$\overline{6} \overline{2} 1$	0.9486	(-0.103)			

Let

$$
\tan \rho=\frac{d_{12}^{*} \sin \varphi_{23}}{d_{23}^{*} \sin \varphi_{12}}
$$

then,

$$
\begin{equation*}
\tan \frac{\sigma-\tau}{2}=\tan (45-\rho) \tan \frac{\sigma+\tau}{2} . \tag{9}
\end{equation*}
$$

The angles σ and τ can be calculated from their sum (8) and difference (9). Now, with three elements known in both triangles $P_{2} P_{1} O$ and $P_{2} P_{3} O$, the ξ s can be calculated and c^{*}, β^{*} and α^{*} derived from (7).

Examples

The parameters c^{*}, α^{*} and β^{*} of copper(II) sulphate pentahydrate have been calculated for both methods described above. The data for this compound given by Brooker \& Nuffield (1966) are quoted below. In Table 1(a),
the values of φ_{m} have been taken from Hulme's (1966) Table 2 and these lead to estimates that are generally within $\pm 0.3 \%$ for c^{*} and $\pm 0.5^{\circ}$ for a^{*} and β^{*}. In Table $1(b)$, the values of ξ have been calculated from Brooker \& Nuffield data. The values of $\left(\xi_{h k l}^{2}-\xi_{h k 0}^{2}\right)$ in parentheses have been rounded and give the parameters in parentheses: evidently, this method of estimation is not unduly sensitive to experimental errors.

I am grateful to Professor D. Rogers for discussions.

References

Alcock, N. W. \& Sheldrick, G. M. (1967). Acta Cryst. 23, 35-38.
Brooker, E. J. \& Nuffield, E. W. (1966). Acta Cryst. 20, 496-501.
Buerger, M. J. (1942). X-ray Crystallography. New York: John Wiley.
Hebert, H. (1978). Acta Cryst. A 34, 946-949.
Hulme, R. (1966). Acta Cryst. 21, 898-900.

Acta Cryst. (1980). A36, 734-736
Diffractometric angles for rotation around the diffraction vector. By Patrice de Meester, Chemical Crystallography Laboratory, Imperial College, London SW7 2AY, England
(Received 24 January 1980; accepted 18 February 1980)

Abstract

It is shown that the azimuthal angle ψ of rotation around the diffraction vector and the four angles $\chi_{0}, \chi, \varphi^{\prime}$ and $90-\omega$, all belong to one right spherical triangle from which the new relations $\sin \psi=\sin \chi \sin \varphi^{\prime}$ and $\cos \varphi^{\prime}=\cos \omega \cos \psi$ are derived. These angles are in fact related by ten trigonometric

$$
0567-7394 / 80 / 040734-03 \$ 01.00
$$

equations which can also be derived by matrix methods. The setting angles for a full ψ rotation of 360° are easily determined when results of both methods are used together.

Several methods have been proposed to calculate the setting angles ω, χ and φ for a given ψ rotation around the © 1980 International Union of Crystallography

